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ABSTltCiCT 

O n  the  bas i s  of the Navier-Stokes equation of motion, the  equation of 

cont inui ty  fo r  a compressible f l u i d ,  and the Poisson equation f o r  charge 

dens i t i e s ,  we  inves t iga te  the spectral d i s t r ibu t ions  af  turbulent energy and 

densit'y f luc tua t ions  i n  a plasma with a strong magnetic f i e l d .  Col l i s ion  

dominated plasmas and co l l i s ion le s s  plasmas are considered. 

The nonlinear equations are solved by the use of a cascade decomposi- 

t ion ,  i n  which the  b ig  eddies contribute t o  the  development of the energy 

spectra ,  and t h e  s m a l l  eddies set up turbulent properties of a medium i n  

which t h e  b ig  eddies move. 

s idered homogeneous, s ta t ionary ,  isotropic ,  and compressible. 

The turbulent motion of the big eddies is con- 

I n  the cal- 

cu la t ions  of t h e  turbulent properties,  the motion of t he  small eddies is  

assumed incompressible, nonhomogeneous, anisotropic,  nonstationary and a 

quasi l inear  approximation is  applied t o  solve t h e i r  dynamical equations. 

For a modal t r ans fe r  t o  prevai l  i n  the d i rec t ion  from b ig  eddies t o  

smaller ones, it i s  necessary t o  provide a diss ipat ion,  o r  a drain.  

d i s s ipa t ion  is represented by the  v iscos i ty  in  a co l l i s ion  dominated plasmas 

However, i n  a c o l l i s i o n l e s s  plasma, the above molecular d i ss ipa t ion  does not 

exist, and i ts  r o l e  is replaced by a co l l i s ion le s s  diss ipat ion,  caused by the  

electrostatic cor re la t ions .  It i s  found t h a t  the co l l i s ion le s s  d iss ipa t ion  

has also t h e  form of a product of a v o r t i c i t y  by a diffusion coef f ic ien t ,  

Such a 

except t he  v o r t i c i t y  involves the  density ra ther  than the veloci ty ,  and the 

d i f fus ion  coe f f i c i en t  involves the Bohm diffusion, r a the r  than the  molecular 

v i scos i ty .  The formula of d i f fus ion  derived here confirms the  Bohm formula 

Y' 
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with a large numerical coef f ic ien t .  

The study emphasizes a plasma where the e lec t ron  temperature f a r  exceeds 

the  ion  temperature, and the  wave length of the  turbulent motion exceeds the  

Debye length.  

which thk spec t ra  are derived a r e  analogous t o  t h a t  governing gravi ty  turbu- 

I However, the reduced system of fundamental equations, from 
i 

! 
lence id atmosphere and ocean with a Cor io l i s  force.  This suggests that: the 

method presented and some of the r e s u l t s  obtained may be appl icable  t o  such 

problems too. 
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1. INTRODUCTION 

W e  propose t o  derive the spectral  distributions of turbulence and 

I 

1 
densi ty  :f luctuations i n  a compressible plasma, with an external ly  applied 

constank raagnetic f ie ld .  

versa1 Llectromagnetic waves are not taken i n t o  account, 

The induced magnetic fluctuations,  which are t rans-  
i 

The plasma m y  be 

dominated by c o l l i s i o n s  o r  may be co l l i s ion less .  

The fundamental equations of motion and charge densi ty  are reduced t o  

a system of the- type of t h e  Riemann' equations, with the addi t ion of a Coriol is  

force and a Viscous force (Sec. 2). 
_ -  . ~ 

Some remarks on the solut ions are given 

i n  Sec. 3. 

I n  order t o  solve the nonlinear equations of turbulence, w e  introduce 

in to  b ig  and small eddies, and apply a method of "cascade decomposition" 

a quasi l inear  approximation t o  t h e  small eddies. A s  a r e s u l t ,  the b ig  eddies 

w i l l  determine the development of the spectra,  and the small eddies w i l l  

shape up the appropriate turbulent properties i n  the medium f o r  the b ig  eddies 

t o  evolve (Secs. 4,5) 

After  computations of the turbulent stresses and correlat ions from the 

solut ions of the l inear ized equations of small eddies (Secs. 6,7), t h e  spec t r a l  

equations are derived (See. 8,9). A special  emphasis is  given t o  equilibrium 

3. Riemann, Ueber d i e  Fortpflantzung ebener Luftwellen von endlicher 
Schwingungsweite, Collected Works, 2nd edi t ion,  Edited by H. Weber, (Dover 
Publications, Inc.  New York, 1953) . . 
1 
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turbulence (Sec. 9 ) .  

two types of functions: modal t r ans fe r s  and diss ipat ions.  "hey involve 

The spec t r a l  equations appears to be governed by 

an eddy v iscos i ty ,  an eddy d i f fus iv i ty ,  and the Bohm diffusion,derived i n  

Sec. 10.1 The eddy d i f f u s i v i t y  agrees with t h e  empirical formula of 

Heisenberg i 2  , but t h e  eddy v i scos i ty  is  d i f f e ren t  i n  view of t he  strong 
i 

e f f e c t  of t he  magnetic f i e l d .  It i s  found t h a t  i n  a co l l i s ion le s s  plasma, 

a d i s s ipa t ion  can s t i l l  be brought about by co l l ec t ive  e l e c t r o s t a t i c  f luc -  

tuat ions , i n  t he  form of a product of a v o r t i c i t y  with a d i f fus ion  coe f f i -  

cie.nt, the  value of which is  found t o  agree with the  Bohm di f fus ion ,  

, 

The 

spec t r a l  laws of -turbulFnce and density F and G are derived fo r  t he  

following problems (Sec 11) : 

(1) Convection of p a r t i c l e s  i n  a co l l i s iona l  plasma (Sec. 12.1) 

F cv ke2 I 

(2) Diffusion of p a r t i c l e s  i n  a c o l l i s i o n a l  plasma (Sec, 12.1) 

-2 F - k  ; 
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(3) Dissipat ion of turbulence and diffusion of pa r t i c l e s  i n  a 

co l l i s iona l  plasm (Sec, 12,2) 

(4) Diffusion of pa r t i c l e s  i n  a co l l i s ion less  plasma (Sec, 13) 

-3 . 
t F - k  

Note the difference of r e s u l t s  i n  the problem (2) with co l l i s ion  and the 

problem (4) without co l l i s ion .  The factors  i n  f ront  of the power laws, 

as w e l l  as the c r i t i c a l  wave numbers characterizing the f a l l  of  the  spectra,  

a r e  alscr determined. Further discussions and applications to similar problems 

are found i n  Sec, (14). 

.+ 
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2. REDUCED SKSTEN OF EQLTATIONS F O R  THE MOTION OF COLD IONS I N  TWO DIMENSIONS 

W e  cons5der ior, waves i n  a plasma, where the electron temperature con- 

siderably exceeds the ion temperature. A s  the phase ve loc i ty  of such waves 

is  much grea te r  than the ion thermal Velocity, we can disregard the e f f e c t s  

from the spread of the ion veloci ty  d is t r ibu t ion ,  and consider the moment 

equations for ions, i n  which the  ion number density is 

n = N + n  , i 

where N is  the mean number density,  and n is the densi ty  f luc tua t ion ,  In  

view of the  hfgh temperature and the  high co l l i s ion  frequency, the electrons 

w i l l  have a maxwellian ve loc i ty  d is t r ibu t ion ,  and a density following the 

Boltzmann d i s t r ibu t ion ,  with n 

s ta t ionary  nature. 

as the ambiant number density of a quasi- i 

Thus the e lec t ron  number density is 

A 

n = n exp($/a> , e i 

where rc) is an e l e c t r o s t a t i c  po ten t ia l  defined by 

E = - a V # ,  

E 

N 

and has the dimension of a velocity,  i s  the e l e c t r o s t a t i c  force,  which 
N 

is the e l e c t r o s t a t i c  f i e l d  multiplied by e / M  , and 

a 
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i s  the phase veloci ty ,  based on t he  e lec t ron  temperature Te , and the 

ion mass M , with the Boltzmann gas constant K Because of t he  small 

value of t he  exponent $/a , and the quasi-s ta t ionari ty  of t h e  ambiant 

temperature n , w e  can write approximately i 

The var ia t ion  

consis ts  of a va r i a t ion  611 and a var ia t ion  e The var ia t ion  6n is 

contri.buted by the ions, with the electrons as forming a stochast ic  baek- 

ground, and t h e  variati.on 6# is contributed by the electrons only. Thus 

and the Poisson equation becomes 

The case encountered i n  most experiments deals with wave lengths exceed- 

ing the Debye lengtlz. I n  t h i s  case the  quasi-neutrali ty exists, the l e f t  haad 

s ide  drops, and t h e  r i g h t  hand s ide  yields  
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I n  the  following, we s h a l l  ca l l  9 a density function, and i ts  spectrum 

w i l l  be ca l l ed  densi ty  spectrum. 

Now the  equations of momentum and continuity for  the  ion motion a re  

N N C N f  

( - + u ~ V ) n + ( ~ ? f n ) V * u  a = O  . at  - N 

Upon introducing the  funct ion $ from Eq. (1) , we can reduce the  equa- 

t ions  i n  the two-dimensional plane perpendicular t o  the ex terna l  magnetic 

f i e l d  as follows: 

t (2) 

has i ts  components Ii j where the tensor 

Ill - - IZ2 = 0 , 112 = -I21 = L , 

and t h e  cyclotron frequency i s  
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I n  the above momentun equation for  the ion motion, w e  have neglected 

the ion pressure; this is  j u s t i f i e d  because the ion temperature i s  negl igible ,  

compared t o  the e lec t ron  temperature. A n  approxbate  viscous term, 

has been added t o  represent a molecular damping of the ion motion, with a 

constant kinematic v i scos i ty  

plasma. Since the viscous e f f ec t  i s  unimportant here, it is not the inten- 

t i o n  of wr i t ing  the viscous term i n  f u l l ,  including the compressibility. 

v ,  which may be dropped i n  a co l l i s ion less  
6 .  

The one-dimensional degeneration of the reduced system without the 

magnetic, f i e l d  i s  recognized a s  the Riemann equations, used in gravity waves. 

and ra refac t ion  waves. 

Coriol is  force.  

problems too 

W e  observe tha t  a magnetic f i e l d  corresponds t o  a 

Therefore the present t reatmentmy be applicable t s  such 

- 
3. REMARKS ON THE THEOXIES OF TURBULENCE 

Moat theories  on the energy s p e c t r w  deal  with an incompressible, 

i s o t r o p k  

simplifying the discussions,  we may f i x  our a t ten t ion  t o  the  following equa- 

homogeneous and s ta t ionary  turbulent f l a i d  For the purpose of 

t ion 2 a a *  a ui 
c p - u  - ) u i = v 2  

%i 
3 hj 

or  preferably i t s  Fourier  transform, use4 as  a model of studying turbulence. 
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'The i n e r t i a  t e r m ,  with the d imnsion  u2/A 

a wave number), plays an important ro l e  

universal  spectrum, which i s  then governed 

(A? i s  a length, and k = l / R  

i n  the  i n e r t i a l  portion of the 

by a constant t ransfer  of energy 

between the  modes o r  s i ze s  (modal t ransfer )  i n  an equilibrium turbulence. 

It is  wr i t t en  dimensionally as 

3 

a 
U - = constant.  

The spectrum F , r e l a t ed  t o  the energy by 

Y 
2/3 = const R 

is  found t o  be given by the formula 

-5/3 
2 F = const k 

3 which is  the  spec t ra l  law of Kolmogoroff . 
A Fourier decomposition of the model equation gives a spec t ra l  equation, 

involving a viscous d iss ipa t ion  and a nonlinear modal t ransfer .  If the l a t t e r  

is assumed t o  be equivalent t o  a new diss ipa t ion  with an eddy d i f fus iv i ty  

postulated dimensionally, the same spec t ra l  l a w  is obtained. This is  the 

method used by Heisenberg . 2 

A.N. Kolmogoroff, Comp. Rend. Acad. Sc i ,  URSS 3_0, 301(1941) . 
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The mathematical problem of turbulence is, of course, much more 

complex, 

equation of ve loc i ty  cor re la t ion  of any order can be generated, but it 

From the  above model equation, or  i t s  Fourier transform, a n  

involves always a cor re la t ion  of a higher order ,  Thus w e  have t o  deal  

with a hierarchy of cor re la t ion  equations, the reso lu t ion  of which requires  

a cu tof f .  

ed by a sum of products of second order cor re la t ions ,  

A closed system is obtained, when the ‘ fou r th  order i s  approximat- 

Such an endeavor is 

undoubtedly tedious, but the  r e su l t s  prove even more discouraging, when a 

negative spectrum i s  found by the  method W e  s h a l l  not discuss other  4. 

more eonplex methods 

The above f a i l u r e  can be a t t r i bu ted  t o  the  strong in te rac t ions  between 

the  four individual modes, so tha t  they may not be decoupled, 

would be permissible w i t h  an advanced state of randdmess. 

A decoupling 

We assume thz t  

the  randomness i s  increased by the  following procedures: 

(1) Instead of individual modes, w e  consider groups of modes; w i t h i n  

each group, and in t e rna l  smoothing process secures a greater  randomization, 

(2) The veloci ty  d i s t r ibu t ion  i n  a turbulent motion deviates  from i t s  

-normal d i s t r i b u t i o  

‘follows that  the group of big eddies i n  the cascade, being depleted of s m a l l  

by the  presence of small eddies a t  high ve loc i t i e s ,  It 

eddies, becomes quasi-normal, 

Y. Ogura, J, Fluid Mech, 16 , 33(1963). 
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(3) The weak in t e rac t ion  between two separate  groups j u s t i f i e s  a 

decoupling . 
I n  the following we s h a l l  consider a s i m p l e  cascade cons is t ing  of two 

groups. 

ing eddi  t ranspor t  propert ies  of the  medium i n  which the  b ig  eddies are t o  

move, and che b ig  eddies are responsible fo r  the evolut ion of t he  energy 

It w i l l  he shown t h a t  the group of small eddies contr ibute  i n  shap- 
~- 

\ 

i 

spectrum. The small eddies,  containing a negligi.ble amount of energy, w i l l  

be t r ea t ed  by a quasi l inear  approximation, and the big eddies,  as determined 

by the  hierarchy, w i l l  be s u f f i c i e n t l y  random t o  j u s t i f y  the  decoupling of 

co r re l a t  ions. 

I n  the framework of hydrodynamic turbulence, the method conveniently 

bypasses the  hierarchy and der ives  i n  a s t r a i g h t  forward way the spec t r a l  

equation of Heisenberg' _ -  and the  eddy v iscos i ty ,  

I n  the  present problem of plasma turbulence, the  hierarchy of b ig  

eddies w i l l  r e t a i n  mixed-correlations of b ig  and s m a l l  eddies t o  the  four th  

ord.er, and cor re la t ions  of big eddies t o  the second order. 

order cor re la t ions  of big eddies are assulned t o  have a negl ig ib le  contribu- 

If the  hfgher 

t i o n  t o  the universal  range of spectrum ( s m a l l  eddies) ,  the hierarchy becomes 

closed. 
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4 ,  METHOD OF CASCADE DEGOMFOSITION 

We write the  ve loc i ty  into two par ls :  

i k  x k 
u,(x) = dk N e N - U (  E )  

0 

0)  

ik x 
u'(x) = dk N e N - U (  x N ) 

k 

representing the big and small eddies respectively.  Here 

dk = f d k  , 

k CQ 

= [dk+ l d k  
0 k 

the last two in tegra ls  being volume integrals  respectively within and outside 

a sphere of radius  k The same notations with indicies  ( ) and ( ') 

w i l l  be applied t o  the var iable  

0 

$ In  t h i s  way the equations (2) determin- 

ing 5 and I,!I a re  decomposed in to  the following : 
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For the big eddies , 

9 = -  a -  
Eg i  ax, 

and for the s-1-1 eddies , 

01 3U 
- a  du; - =  

dt 

a 
a . U  - d -. = I_ 

dt at: Oj aXj 9 
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The t e r m s  

i n  E q s ,  ( 4 )  are ca l l ed  eddy stresses, representing the effects of the motion 

of small eddies  upon the  bigger ones, and they are to be calculated from 

Eqs. (5). 

The motion of t?e s m a l l  eddies are e s sen t i a l ly  very d i f f e ren t  from the  

bigger onesI Therefore separate assumptions a r e  introduced, I n  studying the  

motion of the s m a l l  eddies, &e assumptions are : 

(i) Small. eddies move rap id ly  in  a quasi-stationary background I 

Choose 8 -Length scale k-' separat ing the tvo  groups o f  eddies. An 

average over such a length in t e rva l ,  denoted by 

w i l l  average aut the  f luc tua t ions  of the  small. eddies, but leaves i n t a c t  

the  motion of &e big  eddies. However, an average over a long in t e rva l  of 

length 4, +-m I denoted. by 

€ e . .  > 

w i l l  even average out the  f luc tua t ions  of b ig  eddies,  
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The a p p l k a t i o n  of the averages enable us t o  derive the  separate equa- 

t ions  of moticlpls fo r  the  small and b ig  eddies, from the equation (2) of the  

t o t a l  moP:ion. 

#iEb respec t  t o  the  rap id ly  varying motion of the s m a l l  eddies,  t h e i r  

background motion, as provided by the bigger ones, can be considered a s  

quasi-s ta t ionary,  i.e. it var ies  slowly i n  time and space. 

of t he  small e6dies i s  anisotropic ,  inhomogeneous, and non-stationary. 

Thus the  motion 

(ii) quasgl inear iza t ion  of the equations of motion of the  small eddies 

The sraafl eddies contr ibute  i n  eddy t ransport  propert ies ,  and do not 

embody the m j o r  energy. Therefore they a re  studied by a quasi l inear  approxima- 

t ion.  It should be v a l i d  i n  the  universal  spectrum, i .e ,  fo r  s u f f i c i e n t l y  

large k e 

(iii) Small eddies are incompressible and inviscid 

The m a i n  eoEpress ib i l i ty  e f f e c t  is exhibited by the  b ig  eddies , 
although the  small eddies have a secondary compressibil i ty e f f e c t  i n  

th&i r  rafe of  producing eddy stresses, t h i s  e f f e c t  together with the  

damping axe 

Now the  assumptions concerning the nution o f  the b ig  eddies are: 

(iv) The turbulent  motion of the big eddies is  i so t rop ic ,  s ta t ionary  
and homogenews 
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(v) The b ig  eddies move i n  a loca l ly  i so t ropic  and homogeneous 

medium 

The spa11 eddies prescr ibe eddy t ransport  propert ies ,  which a re  loca l ly  

i so t rop ic  and homogeneous 

I 

5. SIMRL-LHJPED EQUATIONS OF MOTION 

With the use of the  assumption of quasi l inear izat ion (ii), the  assump- 

t i o n  o f  inconpressible and inviscid small eddies (iii), the  equations of 

motion of sm11 eddies ( 5 )  are simplified,  by dropping the  t e r m s  between 

the brackets  giving 
e 

The equations of mot-ion of the  b ig  eddies ( 4 )  remain nonlinear,  

compressible and viscous. 

By mult iplying the  two equations ( 4 )  by uoi and Q0 respect ively,  

we formulate the following energy equations 
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On the rights hand s ide  

in to  - < 130.u- > , and the last t e r m ,  which contributes most t o  the  non- 

universal  range (big eddies) of the spectrum, is  assumed negl igible  i n  the 

universal  range. Hence 

of the last equation, the f i r s t  term i s  transformed 

A s  shown later i n  Sec, 7, the diffusion 

can be calculated on the basis  of 

<E'.%'> cv , 

without t he  intermediary of hierarchy of equations of big eddies. 

The eddy stresses involved are  calculated by means of the equations of 

motion of t he  s m a l l  eddies (7), giving the solutions:  
a 

' 
auos f dt' Psi( t - t ' )  u!(t') 4- [ d t '  P s i ( t - t ' )  E ' ( t ' ) ,  u p - )  = - - a, J S 

'0 
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.In the above Lagrangian formulation, we have wr i t ten  

u’(t’) t o  represent u![ t ’ ,  g t 9 1  . 3 3 

The same representat ion holds f o r  E i ( t ’ ) .  Further,  

and to + . The i n i t i a l  value a t  to -+ a re  dropped, a s  they are not 

correlated with t h e i r  l a t e r  values a t  t . It is  t o  be noticed tha t  the 

t e r m  PsF f o r  s # i w i l l  not contribute i n  the following analysls .  

6 ,  EDDY STRESSES 

The eddy stresses ( 6 ) ,  as  occuring i n  Eqs,(4) and (8) a re  now computed 

from the so lu t ions  (9).  -Evidently w e  s h a l l  expect to  obtain a large scale  

contr ibut ion (which does not vanish by a large scale  average) and a s m d l  

scale  contr ibut ion (which vanishes by a large scale  average). W e  s h a l l  be 

concerned with the l a t t e r  contribution here, wb.iIe the former will be 

re fer red  t o  Sec. 7. The s t r e s ses  play an important ro l e  i n  the modal t ransfers  

across the  spectra .  
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6.1 Calculation of the Turbulent S t ress  < u; U I  >k 
3 

In the evaluation of the turbulent s t r e s s  

J. 

t 
+ d t '  Psi(t-ti) < E i ( t ' )  \ ~ ! ( t ) > ~  , (101 

3 

from ( 9 ) )  we may infer  t ha t  the two in tegra ls  are associated with the 

qradient s 

respectively.  

I n  view of the loca l  s t a t iona r i ty  and homogeneity, the f i r s t  integral  

israccording t o  ( v  ) : 

t' 
dt' P .(t-t') < u:(t') u!(t)  >k 

s1 J 

where 
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03 

= % r d7  cos LdcT< ~'(0). ~'(7) >k . 'k N N 

0 

B y  using ( 9 ) ,  the second in tegra l  of (10) is e x p l i c i t l y  wr i t ten  as 

where the double in tegra l  is  transfornied as follows: 

t t ' 
J dt' J dt" P s i ( t - t ' >  < u;(t")u'(t) >k 1 

Qo W 

t-t' = 7' > 
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w i t h  

and 

Hence after subst i tut ion 'of  (11) - (16) i n to  ( lo) ,  we f i n d  

and consequenqly 

aUoi 
< u ; u ! >  > =  - < < u ' u !  i l k  > - aj ? < uoi axj J k  
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, representing vor t  i c  it ies ,are introduced Ro ' where the notations 

fo r  t he  sake of abbreviation of wri t ings.  They are 

?Eoi au -1 
= <- - Os > M~ Asi 

axj- anr . 
j 

We remark tha t  

t he  assumption of the. isotropy of the  big eddies.  

yo r e s u l t s  from a shear cor re la t ion ,  and can be dropped i n  

Hence we f ind  simply 

which i s  the  modal t r ans fe r  function i n  the  development of the tur,ulent 

spectrum, 

6.2 Calculation of the Density S t r e s s  < u'  &)'/aj >k 
j 

With the a i d  of (9)'  and the  assumption (v), w e  f ind  simply 

and consequently 

. a$' 
< u t -  

j axj 'k 
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which is the modal t ransfer  function i n  the development of the density spectrum. 

Here 

$0 i s  the v o r t i c i t y  function for  

7. ELECTROSTATIC D I F F U S I O N  

The time evolution of the turbulent energy and the density f luctuat ions 

(8) i s  governed by ehe eddy dissipations (17) and (18), and the e lec t ro-  

static diffusion 

We note t h a t  the second of E q s .  ( 4 )  fo r  the density f luctuat ions can 

be remitten i n  the form 

au 
= -  a A 4- € N U  E ' *  u ' > ~  a - - € 3 0 * ~ o  NO - 

at 
's"j 

By taking a large sca le  average, we f ind 

> = < < E ' *  u' > k >  , 
, W o  ZO U - J  

- < E  * 

= < E ' .  u' > , 
N r - 4  
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Thus the  ca l cu la t ion  of t he  d i f fus ion  is  reduced t o  the ca lcu la t ion  of the  

co r re l a t ion  < E '  * u t >  of t?ae small eddies, bypassing the necessi ty  of 

going i n t o  the hierachy of equations. 

N N 

The calculat ions are based upon (9) 

and w i l l  thus s e l e c t  the non-vanishing contributions from the large sca le  

averages. W e  s h a l l  rewr i te  the second of  E q s .  (9) i n  the form 

t 
E i ( t )  = - _Î  aEOi d t '  u!(t') . 

a 4  3 

Taking the  product between the two equations (9), we obtain the large 

scale average 

Gk = < E ' *  u'> 
N N  

t 
3- -! d t '  Psi(t-t') < E J ( t ' )  E ! ( t )  > . 

1 

After a change of var iab les  (14), t he  double in t eg ra l  becomes 

t t 
dt' dt" Psi(t-t') < uA(t') ~ ! ( t " ) > ~  

J 

al al 

= d7' dT" PSi(T')  < ~ ' ( ( 0 )  u.(T'- qJt) >k , 
m. 3 

0 0 
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Hence, a f t e r  subs t i t u t ion  we ob ta in  

i s  I f  'Ifo , which depends on the  shear correlation between E and u 

again. l e f t  out ,  on account of the isotropy, 

-0 ' - 0  

s impl i f ies  t o  

co 

Gk= J" d"i" < E'(0) E ' ( T )  >k COS t+T , 
0 

and becomes the e l e c t r o s t a t i c  d i f fus ion  i n  the ve loc i ty  space, 

8 .  SPECTRAL FUNCTIONS 

Upon subs t i t u t ing  from Eqs. (17) - (19) of the stresses and the  

d i f fus ion  i n t o  E q s .  (81, w e  obtain the  following equakrions €or the  energy 

and the densi ty  f luc tua t ions :  
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where vk, A, and "ik have been defined earlier by Eqs .  (12), (16) and 

(19) 

In  terms of  the Fourier representat ion (3b) ,  the energy is 

k 
=. J dk F(k) j 

0 

where F is the spec t r a l  function of turbulence. I n  the same representa- 

t i o n  we f ind  the v o r t i c i t y  

= 2 s d k k 2 F .  k 

RO 
0 

The densi ty  counterparts a r e  

k 
2 %<$ > =  J d k G ( k )  

0 
k .  

= 2 r dk k2G . JO 
0 
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The e l e c t r o s t a t i c  energy i n  terms of the  poten t ia l  function is :  

and 

For k = , w e  reduce t o  

Ro(k = 0 3 )  = R , 

Jo(k = a> = J . 

9 ,  SPECTRAL EQUATIONS FOR EQUILIBRIUM TWULENCE 

W e  s h a l l  express the equations of turbulent  energy and densi ty  

f luc tua t ions  (20) i n  t e r m s  of spec t r a l  functions.  That portion of the 

spectrum, r e l a t e d  t o  the wave numbers smaller than the universal  range, 

depends on the  s i z e  of t he  experimental vesse l ,  and w i l l  not be co-ilsidered 

here.  

Further we introduce the  r a t e  of viscous d iss ipa t ion  
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Then we can reduce E q s .  (20) t o  the  following 

The terms 

represent the modal transfers,a.nd the term Qk represents the e l e c t r o s t a t i c  

diffusion,  which produces e l e c t r o s t a t i c  f luc tua t ions  by compressibility at  

the expense of the turbulent  k ine t i c  energy. Thus w e  see t h a t  #k , which 

occurs i n  opposite s igns i n  Eqs .  (2la) and (2fb) plays the  r o l e  of a new 

turbulent  d i s s ipa t ion  in t h e  turbulent energy equation (21a), and the role 

of a supply of e n ~ g y  t o  set  up density f luc tua t ions  i n  the density'equa- 

t i o n  (21b). 

* 

10, EDDY VTSCOSXTY, ZDDY DTFFUSIVITY AND BOfTM DIFFUSION 

10.1. Eddy Viscosi ty  and Dif fus iv i ty  

Applying a Fourier transform, we can write 

Q) 

= 2 [ 'dkF(t , lc ) ; 
N 

0 
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where 

i s  the spectral function of turbulence, and 

used i n  the average. 

2R0 is the in t e rva l  of length 

i 
I n  ki similar way, we have 

! 
I 

Here 

- --. - 

-03 -Q) 

7 =  t - t ' ,  

Thus 

-Q) -03 

w i t h  



I n  the i n e r t i a l  subrange, the spectrum 

may be assumed t o  follow a power law 

I f  furthermore , we assume, a s  done usually, t ha t  the i n e r t i a l  subrange 

represents the energy containing portions of the spectrum, then 

where X is  a numerical coeff ic ient  of the order o f  unity.  By the applica- 

L t i on  o f  the  Kdrnogorof f 

m can be a l so  determined and is  

s imil i tude considerat ion, the numerical ioef f i c i e n t  

m = 2 .  

Thus upon subs t i tu t ion  in to  Eq. (22) , we f ind  

with 
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Now k& w i l l  be evaluated approximately. Writing it i n  f u l 1  i n  

Eq. (23),  we have 

! 

-% 00 k' 

= X, dk' F( t ,k ' )  E&.? -f- 2kt2 l dk" F(k")] . 'k C 

k 0 

i 
The integrand cons is t s  of a fac tor  F(t ,k ')  decreasing rap id ly  with k '  , 
and a f ac to r  with brackets which var ies  slowly i n  k' . Assuming a quasi-  

s ta t ionary  spectrum 

F(k") z F ( k ' )  , 

within the  brackets,  w e  obtain 

va l id  i n  the  i n e r t i a l  subrange, and 

4 co 

'k = X, 1 dk' [F(k ' ) /kf3 ] , uC< < Ro , (24b) 
k 

val id  i n  the d i s s ipa t ive  subrange a 

= 0 , and is 
6"lc 

The eddy d ig fus iv i ty  i s  obtained by put t ing 

k 

2 The formula (25) i s  i n  agreement w i t h  tha't proposed eap i r i ca l ly  by Heisenberg . 
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10.2 Bohm Diffusion 

and h, can be f.”rC The above arguments and calculat ions used f o r  

repeated for  the evaluation of t he  e l e c t r o s t a t i c  d i f fus ion  

ve loc i ty  space. W e  f ind 

9, i n  the  

2 
OD 

ak = 2X, a2 dk’ k’ G(kf) 0;; , 
k 

The coef f ic ien t  of d i f fus ion  h is  fouad t o  be 

2 -1 1 = X,a 0, 

It does not arise from the molecular motion , but from e l e c t r o s t a t i c  and 

5 co l l ec t ive  f luctuat ions.  It agrees with the  formula found by Bohm . How- 

ever, t he  numerical coef f ic ien t  here i s  greater  than the  Bohm cGeEficient 1/16 . 

D. Bohm, ”The Charac te r i s t ics  of E l e c t r i c a l  Discharges in Magnetic Fields”,  
ed i ted  by A .  Guthrie and R.K. Wakerling, Chap, 2,  Sec. 5. (HcGraw-Hill 
Book Company, Inc., New York, 1949) ,, 

5 
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The existence of t he  coef f ic ien t  of B o b  d i f fus ion  h e n t a i l s  a 

rate of d i ss ipa t ion  

eh = h J  
I 
i 

f o r  t he idens i ty  spectrum, s imi la r ly  t o  the rate of d i ss ipa t ion  e f o r  
I v 

the  turbulent spectrum. 

11. CASES OF SPECTRA WITd AND WLYdOUT COLLISIONS 

- -We  s h a l l  d i s t inguish  the  following subranges i n  a c o l l i s i o n a l  and a 

co l l i s ion le s s  plasma. 

viscos i ty  v . It is t o  be noted t h a t  in  a co l l i s ion le s s  plasma, t he  

The c o l l i s i o n  i s  represented by the  molecular 

densi ty  spectrum may be i n  the d i f fus ive  subrange, with a Bohm d i f fus ion  

or iginated from e l e c t r o s t a t i c  f luctuat ions.  

I n e r t i a l  and Convective Subranges i n  a Col l i s iona l  Plasma (a) 

H e r e ,  as the  c o l l i s i o n  is dominant 

e >> ex 
V 

The wave numbers are small such tha t  

J 

J 

or  

and 

R > > J .  

and the spectra  F and G are not influenced by y and h . 
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(b) I n e r t i a l  and Diffu ive Subranges i n  a C o l l i  ional Plasma 

Here again 

E >> ex , or  R >> J . 
V 

i 
Now w e  consider the development of the density spectrun i n  a d i f fus ive  

subrangd range, 
I 

x, < <  x , 

under the background of a turbulent spectrum i n  i ts  i n e r t i a l  suhrange 
- - -  .- 

(c) Dissipative and Diffusive Subranges i n  a Col l is ion Dominated 
Plasma 

A s  the co l l i s ion  prevai ls ,  w e  have 

E > > E x  , or  R > > J  , 
V 

too. Now both spectra a re  i n  the  subranges of high wave numbers: 

v k < < v ,  and h k < < h  . 



(d) Diffusion of P a r t i c l e s  i n  a Col l i s ion less  Plasma 

Here as the colf.ision is  small o r  absent, we have 

e I > >  e . 
V 

Like i n  case (b), w e  consider here a l s o  the  development of t h e  densi ty  

spectrum i n  a d i f fus ive  subrange 

under the background of a turbulent spectrum i n  i ts  i n e r t i a l  subrange 

I n  a l l  the  i n e r t i a l  cases (a), (b) and (d), the  turbulent spedtrum 

is i n  the  i n e r t i a l  subrange, so  tha t  

and 

(21) simplify t o  

Vk 
is determined by the formula (24a), so t h a t  the spec t r a l  equations 

V k R o + h k 3 0 = g ~  , 
(28) 

( I  I -  I;) Jo = EA . 
(case d) 
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are ca l l ed  modal t r ans fe r  f o r  turbulent  and densi ty  spectra  respect ively.  

%e terds 
I 

; 
A Jo I v R 0  and 

are the c o l l i s i o n a l  d i s s ipa t ion  by v i scos i ty  and the  co l l i s ion le s s  d iss ipa-  

t i o n  by 3ohm di f fus ion  respect ively.  F ina l ly  

are t h e  rate of d i ss ipa t ions  f o r  the  turbulent and densi ty  spectra. 
_ -  

In the  c o l l i s i o n a l  case (a) and (b), fu r ther  s impl i f ica t ions  can be 

made by noting t h a t  

\ Jo = X(J .. Jo) < <  E . 
V 

When t h i s  t e r m  is neglected, the system (28) reduces t o  

- Vk Ro - &v , 
(1 +k)Jo = EA . 

(cases a, b )  



- 38 - 

The turbulent spectrum is completely determined by i t s  own modal t ransfer ,  

t o  be drained d i r e c t l y  in to  a molecular diss ipat ion,  without the 

intermediary of an e l e c t r o s t a t i c  diffusion . 
In  the case (c), a s  the turbulent spectrum is i n  the d iss ipa t ive  sub- 

range, w e  have 

and Vk 9 X k  are governed by the formulas (24b) and (25), so t h a t  the 

spec t ra l  equations (21) becomes 

k 
(case c ) 

1 2 .  COLLISIONAL PLASMAS 

12.1 Convection and Diffusion of Pa r t i c l e s  i n  a Turbulent Plasma 
w i t h  an I n e r t i a l  Spectrum (Cases a and b ) 

The convective and d i f fus ive  subranges of the density spectra under 

an i n e r t i a l  turbulent spectrum, coverning cases (a) and (b) a r e  governed by 

Eqs. (29). They can be solved separately.  W e  f ind  
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This spec t r a l  l a w  w i l l  f a l l  by the  molecular d i ss ipa t ion  a t  t he  c r i t i ca l  

wave number 

Further w e  f ind 

where 

and 

k > >  

J 

is a c r i t i ca l .  wave number character iz ing the  t r ans i t i on  from the i n e r t i a l  

subrange t o  the d i f fus ive  sllfirange. 
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12.2 Dissipat ive and Diffusive Subranges (case c )  

By d i f f e ren t i a t ing  the system (30) with respect t o  k , the der ivat ive 

being indicated by ( I ) ,  w e  have the equations 

which, upon replacing 

and neglecting \, J a s  compared t o  v , R , a r e  reduced t o  

X;;R + vR' = 0 , 
0 

The asymptotic solut ions f o r  large k are  
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13. DIFFUSION OF PARTICLES IH A COLLISIONLESS PLASMA (Case d) 

Like i n  case (b), t rea ted  in  Sec, 12,  the problem is governed by the 

However, the modal t ransfer  is now not drained by a same equations (26). 

molecuiar diss ipat ion,  absent i n  the present: case, but by a Bohm diffusion.  

We w r i t e  the  system (25) i n  the following form 

In order to resolve t he  system (33),  we d i f f e ren t i a t e  ~75th respect t o  

k and obtain 

For the di f fus ion  t o  be e f fec t ive ,  the processes in  J must have 0 

J0 
developed t o  su f f i c i en t ly  large wave numbers, so tha t  we can replace 

by J, and neglect 

x k < < x  

and Ro i n  the inviscid F spectrum. Thus w e  reduce t o  
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The so lu t ions  are 

The spectral  l a w s  ( 3 4 )  w i l l  f a l l  by co l l i s ion le s s  d iss ipa t ion  a t  a c r i t i c a l  

wave number 

while t he  l i fe  t i m e  of t he  eddy of t h i s  c r i t i c a l  s i z e  i s  

-1/3 t = (JwC) 

14. DISCUSSIOHS 

14 e 1. Dimensional Considerations 

The second of t he  spectrallaws ( 3 4 )  f o r  a co l l i s ion le s s  plasma seems t o  

agree q u i t e  well with experimental r e s u l t s .  It would be important t o  fur ther  

check experimentally the  amplitude, the c r i t i c a l  number of the  fall ( 3 5 ) ,  and 

the  l i f e  t i m e  (36),  espec ia l ly  as t o  t h e i r  dependence on the  rate of turbulent  

d i s s ipa t ion  
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A s  the densi ty  spectrum G assumes the dimension 

a spec t r a l  l a w  

1 4  
a 

G = mC k-5 (37) 

has been suggested f o r  experimental usage6J7' by choosing 

while t h e  cor rec t  l i f e  t i m e  should be 

yielding the spec t r a l  laws ( 3 4 ) .  The e m p i r i c a l  l a w  (37) appears t o  be not 

generally acceptable, as it i s  doubtful that: the amplitude of the  densi ty  

f luc tua t ions  could be independent of any turbulent- s t rength .  Since 

not t he  only sca l e  of t i m e ,  t he  dimensional formulation of t he  spec t r a l  con- 

posi t ion,  without a dynamical foundation, su f f e r s  from the great  a rb i t r a r ines s  

is 
&C 

i n  the  multitude of choices of plausible  formulas. 

' F.F. Chen, Phys. Rev, Le t te rs& 381 (1965). 

N .  D'Angelo arid L.  Enrigues, Phys. P l u ~ d s 2 ,  2290 (1966). 



14.2, Density and Potent ia l  Fluctuations 

I n  most experiments it has been assumed t h a t  the densi ty  f luc tua t ions  

behave l i k e  the poten t ia l  f luc tua t ions ,  This i s  indeed t r u e  i n  the present 

system of cold ions i n  a bath of hot e lectrons where the  wave lengths are 

grea te r  then the  Debye length. More spec i f ica l ly ,  i f  G assumes the k 

spec t ra l  law, it w i l l  be so with the spectrum of densi ty  

-5 

Rn(N+n) However, 

i n  a one-fluid model, where the electrons a re  absent, the Poisson equation 

indicates  t h a t  t he  t e r m  Lnvolving t h e  Debye wave number drops, and w e  would 

have 

2 .  where G i s  the  spectrum of < n >, giving the  law n 

.. 
= const kP1 , 'n 

corresponding t o  
6 = const k-5 

14.3.. Turblence i n  atmosphere and ocean 

f The system (2) is formally analogous to the  Riemann equations with 

the  addi t ion of ro t a t ion  and d iss ipa t ion ,  f o r  a compressible gas with a 

r a t i o  of spec i f i c  hea ts  equal  t o  unity.  The turbulent motion i n  atmosphere 

with temperature f luc tua t ions  and under a Cor io l i s  force i s  governed by the 

same system, arid shows under c e r t a i n  circumstances a spec t ra l  law (31a) 



i n  agreement w i t h  observation. The f luc tua t ions  i n  ve loc i ty  and i n  height 

on the  waters of the ocean with a Coriol is  force  a l so  s a t i s f y  a s i m i l a r  

system of equations,  Those analogies suggest t ha t  the method of solving 

the  nonlinear system of equations of turbulence and even some of the r e s u l t s  

presented here,  may be applicable t o  such problems, and perhaps may pave the  

way of approaching the  more general problem of compressible turbulence, 

14.4. 

A s  shorn. by the Navier-Stokes equation of motion and the  eq ia t ion  of 

conti.nuity f o r  a compressible f lu id ,  the molecular v i scos i ty  provides a 

c o l l i s i o n a l  d i ss ipa t ion  f o r  t he  turbulent motion, but s ince the equatlon of 

cont inui ty  does not contain a inolecular diffusion,  one asks what could be a 

d i s s ipa t ion  mechanism fo r  t he  densi ty  f luc tua t ions ,  

decomposition, proposed i n  See. 4 ,  an e l e c t r o s t a t i c  d i f fus ion  by co l l ec t ive  

f luc tua t ions  can accormt for  a co l l i s ion le s s  diss ipat ion.  L i k e  i n  the c o l l i -  

sional. case, t h e  latter d i s s ipa t ion  

By means of t he  cascade 

i s  a l so  equal t o  t h e  product of a v o r t i c i t y  

d i f fus ion  coef f ic ien t  X i s  found t o  agree 

by a d i f fus ion  coef f ic ien t .  The 

5 with the  Bohm d i f fus ion  . 
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